Evaluation of a Black-Footed Ferret Resource Utilization Function Model

Author(s): David A. Eads, Joshua J. Millspaugh, Dean E. Biggins, David S. Jachowski, and Travis M. Livieri
Published By: The Wildlife Society
URL: http://www.bioone.org/doi/full/10.1002/jwmg.130
ABSTRACT Resource utilization function (RUF) models permit evaluation of potential habitat for endangered species; ideally such models should be evaluated before use in management decision-making. We evaluated the predictive capabilities of a previously developed black-footed ferret (Mustela nigripes) RUF. Using the population-level RUF, generated from ferret observations at an adjacent yet distinct colony, we predicted the distribution of ferrets within a black-tailed prairie dog (Cynomys ludovicianus) colony in the Conata Basin, South Dakota, USA. We evaluated model performance, using data collected during post-breeding spotlight surveys (2007–2008) by assessing model agreement via weighted compositional analysis and count-metrics. Compositional analysis of home range use and colony-level availability, and core area use and home range availability, demonstrated ferret selection of the predicted Very high and High occurrence categories in 2007 and 2008. Simple count-metrics corroborated these findings and suggested selection of the Very high category in 2007 and the Very high and High categories in 2008. Collectively, these results suggested that the RUF was useful in predicting occurrence and intensity of space use of ferrets at our study site, the 2 objectives of the RUF. Application of this validated RUF would increase the resolution of habitat evaluations, permitting prediction of the distribution of ferrets within distinct colonies. Additional model evaluation at other sites, on other black-tailed prairie dog colonies of varying resource configuration and size, would increase understanding of influences upon model performance and the general utility of the RUF.

KEY WORDS black-footed ferret, Cynomys, evaluation, Mustela nigripes, prairie dog, resource selection, resource utilization function, South Dakota, utilization distribution, validation.
The black-footed ferret is currently conserved and managed via captive breeding and reintroduction to increasingly rare habitat. Evaluation and selection of reintroduction sites precede releases of ferrets to the wild. These habitat evaluations involve ranking sites according to biological factors including size and distribution of prairie dog colonies, prairie dog burrow opening densities in colonies, and percent of sites occupied by prairie dogs (Houston et al. 1986, Miller et al. 1988). Thus, to promote ferret conservation, procedures were devised to evaluate prairie dog habitats for ferret translocation and reintroduction. These deductive models involved ranking sites according to biological factors including size and distribution of prairie dog colonies, prairie dog burrow opening densities in colonies, and percent of sites occupied by prairie dogs (Houston et al. 1986, Miller et al. 1988).

The black-footed ferret is currently conserved and managed via captive breeding and reintroduction to increasingly rare habitat. Evaluation and selection of reintroduction sites precede releases of ferrets to the wild. These habitat evaluations are conducted using a model (Biggins et al. 1993, 2006b) derived from previous habitat assessments, including previous deductive models (Houston et al. 1986, Miller et al. 1988). The Biggins et al. (2006b) model estimates the number of ferret families a complex of colonies might support (i.e., carrying capacity). Although this approach is useful, the resolution of habitat evaluation might increase further by considering non-random space use of ferrets (Biggins et al. 1985, Richardson et al. 1987) and the patchiness of aboveground openings to prairie dog burrows (e.g., Jachowski et al. 2008) that allow fine-scale resource selection patterns (Biggins et al. 2006b). A robust resource selection model would help managers predict the distribution of ferrets on colonies and aid in evaluating habitat quality by incorporating fine-scale resource selection in evaluation procedures. Such information could aid in identifying and prioritizing areas most appropriate for future releases of ferrets and for habitat conservation and restoration (e.g., habitat enhancement).

A resource utilization function (RUF) model was recently developed to investigate fine-scale resource selection by ferrets and to potentially predict the distribution of ferrets in individual black-tailed prairie dog (Cynomys ludovicianus) colonies (Jachowski 2007). If robust in predicting the distribution of ferrets in prairie dog colonies, the RUF could be used to further increase the resolution of habitat evaluations for this endangered carnivore. We evaluated the ferret RUF via independent data collected at an adjacent yet distinct black-tailed prairie dog colony in the Conata Basin, South Dakota, USA. Our objective was to validate the RUF in predicting distribution of ferrets. In evaluating the model, we also considered logistical constraints (Shifley et al. 2009).

STUDY AREA

The Conata Basin was a 29,000-ha mixed-grass prairie complex classified as an “experimental and non-essential” recovery area under section 10(j) of the Endangered Species Act. The Conata Basin ferret population was 1 of 4 self-sustaining ferret populations and served as a donor-site to augment reintroductions of ferrets elsewhere in the Great Plains (Lockhart et al. 2006, Jachowski and Lockhart 2009).

We selected a black-tailed prairie dog colony known as the South Exclusion, or SC07 (452 ha), as the site for model evaluation (Fig. 1). The study colony (North American Datum 1927, Universal Transverse Mercator [UTM] 13N N4848099, E716705), first inhabited by reintroduced ferrets in 1997, was mainly on the Buffalo Gap National Grasslands administered by the United States Department of Agriculture (USDA) Forest Service, but partly in Badlands National Park (U.S. Department of Interior, National Park Service). The colony was bordered by seasonal water-drainages and badland buttes. Predominate vegetation on the colony included western wheatgrass (Pascopyrum smithii), blue grama (Bouteloua gracilis), and buffalo grass (Buchloe dactyloides) and, in heavily grazed areas, various species of forbs. Cattle grazed within the colony during periods designated by the USDA. Active black-tailed prairie dog burrow openings (Biggins et al. 1993) were irregularly distributed in the colony (Eads 2009) and physiographic features afforded efficient monitoring of ferrets. The study colony (144.7 burrows/ha) was separated by a water-drainage (approximately 30 to >600 m) from the adjacent, 202-ha South Dakota colony (129.3 burrows/ha) studied by Jachowski (2007), and there were differences between these 2 colonies regarding density and distribution of burrow openings and colony size. Additionally, in our periods of study (2007–2008), during spotlight surveys of both colonies we found no evidence of inter-colony use of these colonies by adult ferrets (T. M. Livieri, Prairie Wildlife Research, Dakoda, USA).
unpublished work). That is, the colonies were spatially, temporally, and biologically \((M. \text{nigripes})\) independent.

Habitat conditions differed between years. Average monthly (Jun to Oct) precipitation was 4.28 cm \((SD = 3.25)\) and 9.91 cm \((SD = 5.07)\). South Dakota Office of Climatology (2009) in 2007 and 2008, respectively.

\[\text{IP} = \text{IP}_{\text{a}} \times \text{IP}_{\text{b}} \times \text{IP}_{\text{c}}\]

We assumed location error 99% to 100% regardless of base station selection, and thus averaged 1.03 \((SD = 0.04)\) and 1.99 in \((SD = 1.10)\) in 2007 and 2008, respectively.

METHODS

Field Methods

Between July and mid-September 2007, we recorded the locations of black-tailed prairie dog burrow openings on the South Exclusion colony using Trimble® CMT MC-V Global Positioning System (GPS) receivers (Trimble Navigation Limited, Sunnyvale, CA) mounted on all terrain vehicles. We classified burrow openings as plugged \((n = 2,527)\) or unplugged. We classified unplugged burrow openings as active \((n = 58,633)\) or inactive \((n = 6,753, \text{Biggins et al. 1993})\). We completed burrow mapping following the first emergence of juvenile black-tailed prairie dogs, during the period of greatest black-tailed prairie dog abundance and activity \((\text{Hoogland 1995})\). We limited remapping of burrow openings by adherence to rows delineated by fluorescent-flags and by marking the edge of burrow openings with DeltaDust\® (Bayer Environmental Science, Durham, NC), a deltamethrin formulation that was being used to reduce flea abundance and thereby halt the spread of plague \((\text{Seery et al. 2003})\). We downloaded burrow opening location data using Trimble® GPS Pathfinder® Office 2.1 (Trimble Navigation Limited, Westminster, CO, USA) and differentially corrected locations using United States Forest Service, Fort Collins, Colorado, Trimble Community Base Station or Elkhart, Kansas GPS Community Base Station correction files in GPS Pathfinder® Office 3.0. Correction ranged from 99% to 100% regardless of base station selection, and thus we assumed location error \(\leq 1\) m. We assumed that the distribution of active burrow openings did not change sufficiently on the colony during 2007–2008 to influence the active burrow utilization distribution (UD) and colony boundary \((\text{Jachowski et al. 2008})\).

Between 13 June and 10 October 2007, and 11 June and 27 September 2008, we monitored 26 adult black-footed ferrets, including 5 animals that we monitored both years, on nearly consecutive nights during spotlight searches \((\text{Clark et al. 1984, Campbell et al. 1985, Biggins et al. 2006a})\) concentrated between midnight and 0600 hr \((\text{Biggins et al. 1986})\). We established a survey route that: 1) maximized coverage of the survey colony, while minimizing overlap, and 2) permitted an evaluation of model performance throughout the entire colony. We trapped and marked adult ferrets in July to August of both years. Intensive surveys \((\text{Biggins et al. 2006a})\) suggested that we monitored all adult ferrets inhabiting the colony.

One observer drove a field vehicle, mounted with a high-intensity spotlight \((240 \text{BLITZ}\text{TM}, \text{Lightforce}\text{TM}, \text{Orofino, ID, USA})\). We limited disturbance to ferrets by exposing them to the minimum light required to identify the occupied burrow opening \((\text{Campbell et al. 1985, Biggins et al. 2006a})\). We implanted individual ferrets with unique passive integrated transponders (PIT, Fagerstone and Johns 1987) and identified ferrets in the field using automated readers (AVID® Microchip I.D. Systems, Folsom, LA). We identified non-implanted ferrets via unique dye-markings applied to ferrets in early- to mid-June of each field season \((\text{Jachowski et al. 2010})\). We collected UTM coordinates of observation locations using hand-held, Garmin® GPS 12XL Personal Navigator® units \((\text{Garmin International, Inc., Olathe, KS})\), rendering accuracy \(\leq 15\) m. Because ferrets are capable of traversing entire home ranges in 12 hr \((\text{Biggins et al. 2006a})\), we included consecutive locations separated by \(\geq 12\) hr in analyses \((\text{White and Garrott 1990, Livieri 2007})\). Nonetheless, 88.13% of consecutive-locations of individual ferrets were separated by \(\geq 24\) hr.

Analysis

In developing RUFs, Jachowski (2007) related heights of grid points within 95% volume-contour UD home ranges of ferrets to the probabilistic UD-distribution of active black-tailed prairie dog burrow openings, space-use proximity and overlap between neighboring ferrets, and distance to colony edge. That is, resource use was defined as intensity of space use at grid points throughout a UD home range \((\text{Marzluff et al. 2004, Millsapgh et al. 2006})\). A set of 16 a priori multiple regression models were fit and model selection was completed via the information-theoretic approach \((\text{Burnham and Anderson 2002})\). The global model was most supported at the Conata Basin.

We could not project behavioral covariates \((\text{proximity of neighbors and space use overlap})\) on the landscape a priori. We instead used fitted models that contained the UD of active black-tailed prairie dog burrow openings and distance to edge of colony, which were the overriding landscape features in the most parsimonious model \((\text{Jachowski 2007})\). Using parameter coefficients from individual Conata Basin animal models \((N = 9\) models, 3 randomly selected for each of 3 ferrets observed 2005–2006) containing only these covariates, we estimated population-level model coefficients \((\text{Millsapgh et al. 2006:387})\), and associated variances \((\text{Marzluff et al. 2004:1416})\), resulting in the following model:

\[
f(x) = 0.024197 + 0.001519(\text{Active-burrow-UD}) + 0.000956(\text{Edge})
\]

The \(\text{Active-burrow-UD}\) parameter \((\text{variance} = 0.000002)\) represented the UD estimate for the distribution of active black-tailed prairie dog burrow openings at grid points throughout the evaluation area. The \(\text{Edge}\) parameter
(variance = 0.000008) represented a raster of Euclidean distances from the 95% volume-contour of the active burrow UD, which represented the colony boundary (intercept variance = 0.000269).

We used this RUF to develop a spatially explicit map of the predicted occurrence of ferrets in the study colony. Following the methods of Jachowski (2007), we used active burrow opening locations and a fixed kernel approach (Seaman and Powell 1996, Millspaugh et al. 2006), with bandwidth selected using plug-in methods (Wand and Jones 1995, Jones et al. 1996, Gitzen et al. 2006), and the Kde folder (Beardah and Baxter 1995) in MATLAb® 5.3 (Mathworks Incorporated, Natick, MA) to estimate values of the Active-burrow-UD parameter. We used the Euclidean Distance function in ArcGIS® 9.2 (Environmental Systems Research Institute, Redlands, CA) to develop a raster of 1-m² cells corresponding to distances to the colony boundary (i.e., 95% volume-contour of the active burrow UD) and then used the raster calculator within ArcGIS, the Euclidean distance and raw active burrow UD rasters, and the RUF to project the predicted occurrence of ferrets on the colony. We classified predicted occurrence into a 4-level, ordered factor based on quantiles (e.g., Rittenhouse et al. 2007). This quantile classification grouped predicted occurrence grid-cells, each of equal size to Active-burrow-UD raster cells, into occurrence categories of equal numbers of features, and thus area (Low, Medium, High, and Very high; Fig. 1). For our evaluation, we assumed the ferret RUF has predictive value if ferrets selected the Very high and High categories.

We developed UD home range estimates for each ferret located ≥30 times within one season (Seaman et al. 1999, Millspaugh et al. 2006) using the UD estimation methods described above. We used the 95% volume-contour to delineate the ferret home range boundary. We used the Area Independent Method (AIM; Seaman and Powell 1990) to delineate ferret core areas. Thus, a ferret AIM core area was the area where intensity of space use was most different than a random space use pattern; an individual ferret’s space use pattern determined the core area boundary. Such delineation of core areas is perhaps preferable to using one arbitrary core area volume (e.g., 50% contour) for all animals (see Seaman and Powell 1990). To delineate AIM core areas, we first calculated a relative frequency of UD values by dividing point-specific raw UD point-values by the sum of all UD point-values. Next, we calculated the percent of the maximum UD value for each UD point by dividing each value by the highest UD point-value (PCTPROB). We then ranked, from high to low, the UD points by PCTPROB values and defined the percent of the home range represented by each UD value as the percentage of UD points having a value greater than or equal to the UD point under evaluation (PCTRANGE). We plotted PCTRANGE versus PCTPROB and defined the core area dividing point as “the point where the plot is maximally distant from a straight line with a slope of −1, the slope of a distribution that cannot be distinguished from random use” (Seaman and Powell 1990:245). We limited estimated core areas to UD points with PCTPROB values (and thus intensity of use values) greater than and equal to the value corresponding to the dividing point.

Insufficient sample size precluded home range and core area estimation of 5 ferrets, including 2 females monitored both years (2007–2008). We considered home ranges and core areas of 1 male and 2 female ferrets, observed sufficiently both years, as independent; these ferrets generally inhabited a different area of the colony (at fine scales) and were neighbored by different ferrets in 2007 and 2008.

We overlaid individual ferret UD home range and core area grids on the predicted occurrence map. Because black-footed ferrets rarely extend movements beyond prairie dog colony boundaries and are dependent on prairie dog burrows for shelter (Forrest et al. 1988; Biggins et al. 2006), we clipped ferret home range and core area estimates (UD grids and polygons) at the colony edge (e.g., Livieri 2007).

We used 2 complementary measures to assess predictive abilities of the RUF. We used compositional analysis (use vs. availability, Aebischer et al. 1993), which has been suggested as a useful means to validate habitat models when independent data are available (Ottaviani et al. 2004), to evaluate whether ferrets selected areas of Very high and High predicted occurrence at 2 scales of selection (Johnson 1980): home range use versus colony-wide availability and core area use versus home range availability. We also evaluated model performance via count-metrics (Fielding and Bell 1997); the metrics evaluated RUF performance at used locations only and availability was not considered. These 2 measures of RUF performance correspond with the objectives of the RUF: to predict ferret occurrence and intensity of ferret space use (i.e., the distribution of ferrets). Other means of evaluating and validating resource selection models via independent data are reviewed elsewhere (e.g., Shifley et al. 2009).

We compared home range use versus availability defined at the colony level (second-order selection) and core area use versus availability defined at the home range level (third-order selection, Johnson 1980). We used weighted compositional analysis (Millspaugh et al. 2006), using UD home ranges and AIM core areas to quantify use, because space use of ferrets is often non-random (Biggins et al. 1985, Richardson et al. 1987, Jachowski 2007). Within ferret home ranges and core areas, we calculated the UD volume in each predicted occurrence class, summed UD values by class, and divided the summed UD value by the total UD value of all patches for each class. This approach provided a weighted UD estimate of use for each class of projected occurrence within home ranges and core areas (Millspaugh et al. 2006). Zero-use of a category increases Type I error rates of compositional analysis; we reclassified zero-use as 0.30, the minimum value that reduced such error in simulation studies (see Bingham et al. 2007). We used a statistical significance threshold (α) of 0.10 for tests of selection and 0.05 for paired t-tests.

Using locations of all monitored adult ferrets by year, we calculated count-metrics (Fielding and Bell 1997) as the
number of ferret locations occurring in areas of predicted occurrence (Very high and High; true-positives) and the number of locations occurring in areas of predicted absence (Medium and Low; false-negatives). For each year of data, we conducted a Pearson’s chi-square goodness-of-fit test to determine if we observed ferrets in areas of some occurrence categories more often than expected, assuming equal numbers of observations per occurrence category. Pearson’s residuals \(r \) aided in determining if selection for areas of an occurrence category was greater \((r > 1.96) \) or less \((r < -1.96) \) than expected by chance \((\alpha = 0.05)\).

RESULTS

We collected \(\geq 30 \) observations per ferret \((\bar{x} = 39.14, \text{range} = 30–55, \text{SE} = 1.29)\) on 11 (8 F, 3 M) and 10 (5 F, 5 M) adult black-footed ferrets in 2007 and 2008, respectively. We used this subset of animals for compositional analyses. In this subset, we monitored 3 ferrets both years. We used all locations collected in 2007 (9 F, 3 M, 458 observations, \(\bar{x} = 38.17, \text{range} = 12–47, \text{SE} = 2.67 \)) and 2008 (9 F, 5 M, 418 observations, \(\bar{x} = 29.86, \text{range} = 2–55, \text{SE} = 3.88 \)) in count-metric evaluations. This inclusive dataset included 5 ferrets monitored in both years.

A comparison between 2007 colony-level availability and home range use demonstrated selection rankings (high to low) of Very high, High, Medium, and Low \((\text{Wilk’s } \lambda = 0.528, \chi^2 = 7.029, P = 0.071)\). The Very high class was selected over all other classes, and the High class was selected over the Low class (Fig. 2). We observed ferrets more frequently than expected in areas of Very high predicted occurrence and less frequently in areas of Low and Medium predicted occurrence (Table 1, \(\chi^2 = 133.180, P < 0.001 \)).

A comparison between 2008 colony-level availability and home range use demonstrated selection rankings of High, Very high, Medium, and Low \((\text{Wilk’s } \lambda = 0.442, \chi^2 = 8.167, P = 0.043)\). The High class was selected over the Medium and Low classes (Fig. 2). A comparison between home range level availability and core area use demonstrated selection rankings of High, Very high, Medium, and Low \((\text{Wilk’s } \lambda = 0.366, \chi^2 = 10.039, P = 0.018)\). The High class was selected over the Low class (Fig. 2). We observed ferrets more frequently than expected in areas of Very high and High predicted occurrence and less frequently in areas of Low and Medium predicted occurrence (Table 1, \(\chi^2 = 88.070, P < 0.001 \)).

DISCUSSION

Count-metrics and compositional analysis demonstrated that the Jachowski (2007) RUF adequately predicted the distribution and intensity of black-footed ferret space use on the South Exclosure of the Conata Basin, a black-tailed prairie dog colony independent from the colony of RUF development. Despite intersexual differences in space use by most Mustela species \((\text{Powell 1979, King and Powell 2007})\) and inter-ferret variation in duration of colony-residency and other experiential factors \((\text{e.g., with prey, adult conspecifics})\), the RUF model predicted ferret occurrence and space use. Additionally, the model was useful in predicting ferret occurrence and space use subsequent to changes in vegetation on the colony \((2007 \text{ vs. } 2008)\). These results collectively suggest potential utility of the model for estimating fine-scale resource selection by ferrets within prairie dog colonies, which could aid in evaluation of habitat for ferrets.

The RUF could complement evaluations of the suitability of Conata Basin black-tailed prairie dog colonies for ferrets. The current approach for assessing ferret habitat suitability involves coarse-scale evaluations of prairie dog complexes and subcomplexes \((\text{Biggins et al. 1993, 2006c})\). Although this

Figure 2. Proportional use and availability \((\pm 1 \text{ SE})\), of 4 classes of predicted occurrence, for 11 black-footed ferrets monitored \((\geq 30 \text{ locations})\) between 13 Jun and 10 Oct 2007 and 10 adult ferrets monitored between 11 Jun and 27 Sep 2008 on the South Exclosure, a 452-ha black-tailed prairie dog colony in the Conata Basin, Buffalo Gap National Grasslands, South Dakota, USA. Graphs correspond to (A,C) weighted (utilization distribution [UD] volume) use of classes of predicted occurrence in 95% volume-contour UD home ranges compared to colony-level availability of the classes and (B,D) weighted use of classes in Area Independent Method core areas compared to home range availability (unweighted) of the classes. Classes sharing underscore were not significantly different \((\alpha = 0.05)\) based on paired \(t\)-tests.
approach has proven useful, our study and others implicate consideration of within-colony attributes when evaluating ferret habitat. Ferrets appear to select areas of high burrow opening and active burrow opening density (Biggins et al. 2006b; Jachowski 2007; Livieri 2007; Eads 2009), likely because burrows afford refuge from some predators and inclement weather (Biggins 2000) and active burrow opening densities often correlate with densities of prairie dog prey (Biggins et al. 1993, 2006c, d; Johnson and Collinge 2004). Recent analyses also implicate fitness advantages of areas of high burrow opening density (D. E. Biggins, United States Geological Survey, unpublished work). Accordingly, fine-scale measures of the distribution of burrow openings within colonies, such as those incorporated in the Jachowski (2007) RUF, would facilitate evaluation of habitat for ferrets within colonies of a complex.

The Biggins et al. (1993, 2006c) method estimates ferret carrying capacities of entire prairie dog complexes, whereas the Jachowski (2007) RUF permits prediction of the occurrence of ferrets within distinct colonies and encourages assessment of the probabilistic (UD) distribution of active burrow openings throughout colonies. Collectively, the 2 approaches provide a coarse- and fine-scale assessment of habitat for ferrets. The ferret RUF (Jachowski 2007) could serve multiple purposes. For instance, managers can compare RUF grid-cell values to identify release locations within distinct colonies. Strategic releases of this sort might increase RUF grid-cell values to identify release locations within colonies of a complex.

Table 1. Numbers of observed and expected locations of black-footed ferrets in each class of predicted occurrence (Fig. 1) between 13 Jun and 10 Oct 2007 (n = 12 ferrets, 457 observations included) and 11 Jun and 27 Sep 2008 (n = 14 ferrets, 413 observations included) on the South Exlosure, a 452-ha black-tailed prairie dog colony in the Conata Basin, Buffalo Gap National Grasslands, South Dakota, USA. Numbers of observed locations in a predicted occurrence category were greater or less than expected if the corresponding Pearson residual (r), from a Pearson’s chi-square goodness-of-fit test (P < 0.001, 2007 and 2008), was >1.96 or <−1.96 (α = 0.05), respectively.

<table>
<thead>
<tr>
<th>Predicted occurrence</th>
<th>2007 Observed</th>
<th>Expected</th>
<th>r</th>
<th>2008 Observed</th>
<th>Expected</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>43</td>
<td>114.5</td>
<td>−6.68</td>
<td>49</td>
<td>104.5</td>
<td>−5.43</td>
</tr>
<tr>
<td>Medium</td>
<td>86</td>
<td>114.5</td>
<td>−2.66</td>
<td>67</td>
<td>104.5</td>
<td>−3.67</td>
</tr>
<tr>
<td>High</td>
<td>118</td>
<td>114.5</td>
<td>0.33</td>
<td>137</td>
<td>104.5</td>
<td>3.18</td>
</tr>
<tr>
<td>Very high</td>
<td>211</td>
<td>114.5</td>
<td>9.02</td>
<td>165</td>
<td>104.5</td>
<td>5.92</td>
</tr>
</tbody>
</table>

The ferret RUF successfully predicted distribution of ferrets at an independent black-tailed prairie dog colony in the Conata Basin. The predictive abilities of the model were robust to differences in animals occupying the colony of evaluation and environmental differences within the colony among years (e.g., vegetation height). This is the first validated model predicting ferret distribution in a prairie dog colony, which can aid managers in: 1) investigating the distribution of active prairie dog burrow openings, 2) predicting ferret distribution in colonies of a reintroduction site, 3) identifying predicted high use areas for releases of ferrets, 4) identifying predicted low use areas for habitat enhance-
ment for ferrets, and 5) potentially providing an independent estimate of the abundance of ferrets in complexes of prairie dog colonies (e.g., Boyce and McDonald 1999). To use the ferret RUF, prairie dog burrow openings must be mapped. Although this step is time-consuming, we encourage managers to collect this information when administering insecticides to control plague (e.g., Jachowski et al. 2008). Given spatial heterogeneity of burrow openings within prairie dog colonies, and the diversity of shapes and sizes of prairie dog colonies, the RUF should be evaluated and validated on black-tailed prairie dog colonies of different sizes, shapes, and resource configurations, both inside and outside the Conata Basin.

ACKNOWLEDGMENTS

Our study was made possible through State Wildlife Grant T35 study number 2435, provided by the South Dakota Department of Game, Fish and Parks; the National Fish and Wildlife Foundation (grant number 2006-0058-0000); the South Dakota Department of Game, Fish and Parks Small Grants Program; the South Dakota Department of Game, Fish and Parks Competitive Grants Program; and the University of Missouri. D. Eads was also supported by S. and D. Webb. Logistical and field support were provided by the United States Fish and Wildlife Service; the United States Forest Service; the United States Geological Survey; and Prairie Wildlife Research. Thanks to P. Gober, S. Larson, and D. Marsh for assistance with spotlight surveys; R. Jachowski, M. Reuber, and A. Turgeon for assistance with burrow mapping; R. Griebel and R. Jachowski for logistical support; and the Baysinger’s and Wooden Knife’s for housing support. Thanks also to T. Bonnot, H. He, and M. Gompper for productive discussions, R. Powell for facilitating estimation of ferret core areas, T. Bonnot for logistical support, and C. Bodinon, J. Chipault, R. Gitzen, A. Goldberg, S. Grassel, S. Ramakrishnan, 2 anonymous reviewers, and Associate Editor J. Bowman for constructive reviews of a previous draft of the manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government.

LITERATURE CITED

Beardah C. C., and M. J. Baxter, editors. 1995. MATLAB routines for kernel density estimation and the graphical representation of archaeological data. Leiden University, Rapenburg, the Netherlands.

Shiel, S., C. D. Rittenhouse, and J. J. Millsbaugh. 2009. Validation of landscape simulation models that predict vegetation and wildlife dynam-
ics. in J. J., Millsbaugh, and F. R. Thompson, III, editors. Models for planning wildlife conservation in large landscapes. Elsevier Science, San Diego, California, USA.

Associate Editor: Jeff Bowman.