Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species

Alejandro Tovar-Mendez¹, Aruna Kumar¹†, Katsuhiko Kondo¹‡, Amy Ashford², You S. Baek², Lillian Welch²§, Patricia A. Bedinger² and Bruce A. McClure¹*

¹Division of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO 65211 USA, and ²Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA

SUMMARY

Interspecific reproductive barriers are poorly understood, but are central to the biological species concept. The pre-zygotic barriers between red- and green-fruited species in the tomato clade of the genus Solanum provide a model to better understand these barriers in plants. Compatibility usually follows the SI x SC rule: pollen from self-compatible (SC) red-fruited species is rejected on pistils of the predominantly self-incompatible (SI) green-fruited species, but the reciprocal crosses are compatible. This suggests that the interspecific reproductive barrier may be linked to the intraspecific SI mechanism. However, pollen from the SC red-fruited species is also rejected by SC accessions of green-fruited species that lack S-RNase, a key protein expressed in pistils of SI Solanum species. Thus, multiple mechanisms may contribute to the barrier between red- and green-fruited species. We tested whether an S-RNase-dependent barrier is sufficient for rejection of pollen from red-fruited species by introducing functional S-RNase, HT-A and HT-B genes from SI species into Solanum lycopersicum (cultivated tomato). We found that expressing S-RNase in combination with either HT-A or HT-B in the pistil is sufficient to cause rejection of pollen from all four red-fruited species. Thus, redundant mechanisms must operate side by side to prevent crosses between red- and green-fruited species in the clade, underlining the complexity of interspecific pollination barriers. Our results also have implications for mating system transitions. We suggest that these transitions must occur in a specific sequence, and that the transition from SI to SC also affects interspecific compatibility.

Keywords: interspecific compatibility, unilateral incompatibility, gametophytic self-incompatibility, tomato, mating system, Solanum.

INTRODUCTION

Studies of interspecific reproductive barriers are important for crop improvement and for understanding how species diverge and maintain their identity. Wild relatives of crop species often possess adaptations to a wide range of environments; these adaptations may include useful agronomic traits such as resistance to abiotic and biotic stresses. In order to effectively incorporate these valuable traits into crop species, it is important to understand the basis of interspecific reproductive barriers between plant species, as these may limit the use of wild germplasm. The tomato clade is a useful model for studies of interspecific reproductive barriers because a variety of barriers exist between the 12 species, and the compatibility relationships are generally known. Moreover, the clade is probably undergoing active speciation in the highly diverse and fragmented environment of the western slopes of the Andes where the species are endemic (Nakazato et al., 2010).

Failure of interspecific pollination may be attributed to incongruity when pollen and pistil are poorly matched due to evolutionary divergence, as may occur between distantly related species, or incompatibility when the pistil expresses active rejection factors that are not balanced by corresponding pollen resistance factors (McClure et al., 2000). Failure of an interspecific cross may be attributed to either process to a greater or lesser extent, but there is evidence that active processes operate in the tomato clade.
For example, Chalivendra et al. (2013) recently showed that pollen from cultivated tomato, Solanum lycopersicum, is compatible on immature S. pennelli pistils but is rejected by mature pistils. This response is consistent with active pollen rejection, as the immature S. pennelli pistil clearly expresses factors needed for pollen germination, pollen tube growth and guidance, while factors required for recognition and rejection of S. lycopersicum pollen are added later. However, the identity of these factors and their mechanisms of action are not well known.

Self-incompatibility (SI) systems that prevent inbreeding within a species are the best understood mechanisms for pollen recognition and rejection. As SI species reject self-pollen, out-crossing dominates their mating behavior, favoring genetic diversity. The specificity of pollen rejection in SI is usually controlled by a single locus, called the S locus. SI Solanum species display S-RNase-based systems in which pistil-expressed S-RNase proteins control the specificity of pollen rejection, and pollen-expressed S-locus F-box (SLF) proteins provide for specificity (i.e. compatibility or incompatibility) on the pollen side (Iwano and Takayama, 2012). S-RNases, together with other pistil factors, act as cytolysins specifically directed against incompatible pollen (McClure et al., 1990). Compatible pollen clearly overcomes rejection, and SLF and other pollen proteins must function as resistance factors although various mechanisms have been proposed to account for this (Goldraij et al., 2006; Kubo et al., 2010). S-RNase-based SI is thus an example of an active pollen rejection mechanism, and is developmentally controlled; immature pistils are competent to support pollination, and SI functions are expressed when the pistil is mature. Pollen recognition and rejection are exquisitely specific in SI: pollen is rejected only when the pollen S-haplotype is identical to either of the two S-haplotypes in the diploid pistil. Modifier genes are also required for both pistil and pollen SI functions but do not contribute to S-specificity per se (McClure et al., 1999; Tsukamoto et al., 2003; Hancock et al., 2005; Hua and Kao, 2006; Puerta et al., 2009; Zhao et al., 2010; Jiménez-Durán et al., 2013). On the pistil side, modifier genes, including HT proteins, the 120 kDa glycoprotein and the protease inhibitor NaStep, have been directly implicated in S-haplotype-specific pollen rejection using RNAi or antisense experiments in Nicotiana (McClure et al., 1999; O’Brien et al., 2002; Hancock et al., 2005; Jiménez-Durán et al., 2013). As pollen-expressed SLF genes are thought to function in an SCF ubiquitin ligase complex, pollen modifier genes include at least those genes encoding a Skp1 homolog (Zhao et al., 2010), a Cullin1 (Hua and Kao, 2006) and/or S-RNase binding proteins (Hua and Kao, 2006).

Most Solanum species are SI, but SI has been lost multiple times in the tomato clade alone (Rick and Chetelat, 1991; Igic et al., 2008; Bedinger et al., 2011). Kondo et al. (2002a) suggested that loss of SI in the four red- or orange-fruited SC species (S. lycopersicum, S. pimpinellifolium, S. galapagense and S. cheesmaniae; hereafter referred to as ‘red-fruited’ species) is associated with mutations in HT-A, HT-B and/or S-RNase genes. Two green-fruited SC species, S. chmielewskii and S. neorickii, represent independent losses of SI. SC populations of otherwise SI species are also known. For example, the SC S. arcanum accession LA2157 expresses catalytically inactive S-RNase (Kowyma et al., 1994; Royo et al., 1994), while SC S. pennelli accession LA0716 and SC accessions of S. habrochaites do not express S-RNase (Covey et al., 2010; Chalivendra et al., 2013). It is noteworthy that these examples represent defects in pistil-side SI factors that contribute to pollen rejection. As the balance between pistil-rejection functions and pollen resistance determines overall compatibility, such changes may have consequences beyond the shift from SI to SC.

Interspecific pollination barriers act at the species level, and thus recognition and rejection are inherently less specific than in SI. Moreover, there is evidence of considerable complexity, because multiple mechanisms contribute to interspecific reproductive barriers, even between a single pair of species. However, there is also evidence that some interspecific pollination barriers in Solanaceae are related to SI. Unilateral incompatibility (UI) is an interspecific relationship on which pollinations are only compatible in one direction. It often occurs between SI species and their SC relatives, and often follows the SI x SC rule (i.e. SI plants reject pollen from SC species, but the reciprocal cross is compatible), suggesting that SI factors participate in this type of UI (Lewis and Crowe, 1958). This type of UI is common in the tomato clade. Pollen from red-fruited SC S. lycopersicum is rejected by green-fruited SI relatives, such as S. habrochaites and S. pennelli. Genetic studies of these systems show major-effect QTLs on both the pistil and pollen sides that coincide with the S locus (Chetelat and Deverna, 1991; Bernacchi and Tanksley, 1997). The pollen-side UI factor encoded by ui6.1 is a Cullin1 protein that is similar to a protein from Petunia that has been implicated in SI (Hua and Kao, 2006; Li and Chetelat, 2010). Furthermore, the product of ui6.1 only functions when the gene is expressed in conjunction with ui1.1, a distinct pollen UI QTL located at the S locus (Li and Chetelat, 2010; Li et al., 2010). An additional QTL that contributes to pistil-side UI (Bernacchi and Tanksley, 1997) includes the HT gene locus (Covey et al., 2010).

In another solanaceous genus, Nicotiana, SI N. alata rejects pollen from SC relatives, including N. plumbaginifolia, N. longiflora, N. tabacum and N. glutinosa. Direct manipulation of S-RNase and HT expression in Nicotiana causes gain or loss of specific UI responses (Murfett et al., 1996; Hancock et al., 2005), providing evidence that redundant rejection mechanisms may contribute to UI between a single pair of species. For example, both
S-RNase-dependent and S-RNase-independent mechanisms in *N. alata* contribute to rejection of pollen from *N. tabacum* (Murfett et al., 1996). S-RNase-dependent and S-RNase-independent mechanisms also exist side by side in *S. pennelli* (Covey et al., 2010; Chalivendra et al., 2013). Redundant mechanisms may confound efforts to elucidate interspecific pollination barriers, because loss of pistil barriers for one mechanism does not necessarily alter compatibility if a redundant mechanism is sufficient for rejection.

The tomato clade is ideal for elucidating connections between SI and UI as well as identifying unrelated interspecific reproductive barriers. Figure 1 shows compatibility and incompatibility relationships between SC *S. lycopersicum* and some of its wild relatives. Crosses between *S. lycopersicum* and the other red-fruited SC species are fully compatible (Figure 1, right). All four red-fruited species lack functional S-RNase and HT genes (Kondo et al., 2002a). For example, the HT-A and HT-B genes in these species display nonsense mutations and either no transcript is accumulated (HT-B) or a transcript is expressed that results in a severely truncated peptide (HT-A) (Kondo et al., 2002a). By contrast, the green-fruited species show UI: *S. lycopersicum* accepts pollen from green-fruited species, but the reciprocal pollinations are incompatible (Figure 1, left). Figure 1 also shows some complexities of interspecific compatibility and departures from the SI x SC rule. Kondo et al. (2002a) reported defects in S-RNase and HT gene expression in the closely related green-fruited SC species *S. neorickii* and *S. chmielewskii*, indicating loss of pistil-side SI function, but UI between *S. lycopersicum* and these species is still observed. Thus, UI between *S. neorickii* and *S. chmielewskii* and the red-fruited species is S-RNase-independent. Likewise, Figure 1 shows UI between *S. lycopersicum* and two SC accessions of the largely SI species *S. pennelli* (accession LA0716) and *S. habrochaites* (accession LA0407). These SC accessions do not express S-RNase (Covey et al., 2010; Chalivendra et al., 2013), and therefore also reject pollen from red-fruited species by S-RNase-independent mechanisms. A simplistic interpretation of the SI x SC rule is that an intact SI system is necessary and sufficient for UI. For instance, if SI and UI were mechanistically identical, loss of SI would result in concomitant loss of UI; that is why, SI x SC rule exceptions have been used as evidence to suggest that SI and UI are unrelated (Hogenboom, 1972; de Nettancourt, 1997). However, such examples may be equally explained by the alternative hypothesis that pistils of the SI green-fruited species express redundant pollen rejection mechanisms (i.e. S-RNase-dependent and S-RNase-independent mechanisms, either of which is sufficient for pollen rejection), and that pollen from the red-fruited species does not express resistance factors for either mechanism.

We tested the hypothesis that S-RNase-dependent UI is sufficient to form an interspecific reproductive barrier between red- and green-fruited species by re-introducing the functional pistil-side SI genes S-RNase, HT-A and HT-B into *S. lycopersicum*, and testing the effects on pollen from tomato relatives. We found that restoration of these factors was sufficient to recapitulate a pistil-side interspecific UI barrier, and that both S-RNase and HT genes are required. As restoring a pistil barrier in a species whose pollen cannot overcome it results in self-sterility, our results further show that mating system transitions must progress with loss of pistil-side function occurring first. This, together with the linkage between SI and UI, suggests that mating system transitions may have effects on compatibility between species as well as within species.

RESULTS

The experimental model

The gain-of-function experiment tested whether an S-RNase-dependent mechanism is sufficient for unilateral incompatible pollen rejection in the pistil. Figure 2 shows the experimental strategy. The hypothesis was that pistil-side SI factors (i.e. S-RNase and HT proteins) create a specific UI barrier similar to the natural barrier between red- and green-fruited tomato species because the former lack appropriate pollen resistance to UI barriers.
untransformed *S. lycopersicum* tested whether self-sterility resulted from lack of pollen viability (Figure 2b, left). Self-sterility in these experiments should not be confused with SI. SI is characterized by S-haplotype-specific pollen rejection, and pollen from SI species is resistant to any S-RNase apart from self S-RNase (McClure, 2009; Iwano and Takayama, 2012). Species-level pollen rejection in UI is not S-haplotype-specific, probably as a result of a complete lack of pollen resistance to all S-RNases (Murfett et al., 1996; Beecher et al., 2001). Thus, the species-level specificity test for the recapitulated UI barrier utilized pollen that shows functional S-RNase resistance, i.e. pollen from *S. pennellii* accession LA0716 (Figure 2b, right).

S-RNase or HT genes alone are insufficient to recapitulate a pistil UI barrier

S$_p$-RNase from SI *S. arcanum* accession LA2163 was previously cloned, and its expression in *S. lycopersicum* has no effect on pistil compatibility (Kondo et al., 2002b); numerous self-pollen tubes reach the base of the style in plants expressing *S*$_p$-RNase (Figure S1). In most *Solanum* species, there are two HT genes, HT-A and HT-B. We expressed the HT-A and HT-B genes from SI *S. pennellii* accession LA2560 separately in *S. lycopersicum*, and also found no effect on compatibility (Figure S1). *S. lycopersicum* cv. VF36 pollen was used as a tester throughout this study as it flowered more dependably than other cultivars.

Pyramiding HT-A or HT-B genes with S-RNase recapitulates a specific pistil UI barrier

To test the effects of expressing HT transgenes in combination with *S*$_p$-RNase, we crossed appropriate transgenic plants and analyzed T$_1$ and T$_2$ progeny. We found that HT protein expression is lower in progeny plants than in T$_0$ plants (Figure S2); however, in combination with *S*$_p$-RNase, the levels of HT-A protein are sufficient to change the pollination phenotype. Figure 3 shows that plants expressing both HT-A and *S*$_p$-RNase display a specific pistil UI barrier. For example, T$_1$ plants HTA/S6-2,-3 and -4 reject self or *S. lycopersicum* cv. VF36 pollen and accept pollen from *S. pennellii* accession LA0716 (Figure 3a–c). A specific UI response is indicated because pollen from the two species behaves differently: *S. lycopersicum* pollen is rejected, but pollen from *S. pennellii* accession LA0716 is not. T$_1$ plants HTA/S6-1 and -5 did not inherit the HT-A transgene and do not display UI (Figure 3a–c). As the transgene promoter is expressed late in pistil development, it is possible to generate T$_2$ plants by pollinating immature T$_1$ buds. Results are shown for six T$_2$ progeny of plant HTA/S6-3. T$_2$ plants HTA/S6-6 and -7 inherited no transgenes or a single transgene and accept *S. lycopersicum* pollen. In contrast, plants HTA/S6-8–11 inherited both transgenes and show the recapitulated UI barrier (Figure 3a–c and Table S1). The incompatible self or *S. lycopersicum* cv. VF36 pollen tubes...
typically penetrate only approximately 2.5 mm, and display intense callose staining near the tip, which is characteristic of rejection (e.g. plant HTA/S6-10; Figure 3d). Plants expressing both HT-B and S6-RNase also show a specific UI barrier (Figure 4 and Table S2). We again observed lower HT protein levels in progeny plants than in T0 plants (Figure S2). T1 HTB/S6 plants expressing high levels of both HT-B and S6-RNase protein show a strong and specific UI barrier by rejecting both S. lycopersicum cv. VF36 pollen and self pollen while remaining fully compatible with pollen from SC S. pennellii accession LA0716 (plants HTB/S6-1 and -2; Figure 4 and Table S2). Plants expressing lower levels of HT-B protein show intermediate UI, consistent with a threshold effect (plants HTB/S6-3, -4 and -5; Figure 4), and a plant that did not inherit the HT-B transgene expressed no HT-B and showed no UI barrier (plant HTB/S6-6, Figure 4). Plants expressing low levels of HT-B usually show more than 20 S. lycopersicum cv. VF36 pollen tubes at the base of the style, but usually show fewer than 20 self-pollen tubes at the base of the style (scored as + or −, respectively, in Figure 4c). Both sources of S. lycopersicum pollen (i.e. self-pollen and pollen from untransformed S. lycopersicum cv. VF36) show dramatically reduced numbers of pollen tubes at the base of the style compared to pollen from SC S. pennellii accession LA0716. This is indicative of a weak UI barrier that allows poor but nevertheless significant penetration by S. lycopersicum pollen (Table S2 and Figure S3). Plant HTB/S6-3, with very low HT-B expression, shows the weakest UI response. One of the highly expressing HTB/S6 T1 plants was self-pollinated at the immature stage, and yielded T2 plants segregating for the transgenes. Again, only plants expressing both transgenes show a specific UI barrier (plants HTB/S6-7 and -8 versus plants HTB/S6-9 and -10; Figure 4).

Together, the results in Figures 3 and 4 show that pyramiding transgenes from various SI species in order to express both HT proteins and S-RNase is sufficient to recapitulate a pistil-side UI barrier and cause rejection of pollen from SC S. lycopersicum. As predicted (Figure 2), plants that are otherwise SC but expressing rejection factors in the pistil display self-sterility and reject pollen from untransformed S. lycopersicum. Moreover, both HT-A and HT-B are functional in this UI system as neither protein causes specific rejection of S. lycopersicum pollen.

The HT/S6 UI barrier distinguishes pollen from red-fruited and green-fruited tomato species

We used pollen from the three other red-fruited SC species (S. cheesmaniae accession LA0522, S. galapagense
accession LA0438 and *S. pimpinellifolium* accession LA3798) and four green-fruited SC or SI species (SC *S. chmielewskii* accession LA1316, SC *S. neorickii* accession LA4023, SC *S. habrochaites* accession LA1777 and SI *S. pennellii* accession LA2560) as a further test of species-level specificity. Plants expressing only HT-A, HT-B or S6-RNase accept pollen from all seven sources (Table 1 and Figures S4–S6). However, plants expressing either HT protein plus S6-RNase (HT/S6 plants) specifically reject pollen from the red-fruited species but accept pollen from both SC and SI green-fruited species (Table 1, solid box). Figure 5 shows that, after 24 h, pollen tubes from red-fruited species typically penetrate approximately 2–3 mm, and that compatible pollen tubes from any of the green-fruited species reach the ovary (approximately 5 mm; Figure 5 and Tables S3 and S4). This pollen tube length is similar but longer than the *S. lycopersicum* pollen tubes penetrating SI *S. pennellii* accession LA2560 or SI *S. habrochaites* accession LA1777, but shorter than expected in a 'late UI' response that is observed in some SC green-fruited species, in which pollen tubes transverse 60–70% of the style (Covey et al., 2010).

DISCUSSION

S-RNase-dependent UI is sufficient as an interspecific reproductive barrier between wild tomato species

Molecular studies of intraspecific SI systems have advanced more than studies of UI, partly because the S-haplotype-specificity of pollen rejection simplifies phenotypic analysis and because the genetics of the well-studied SI systems are known. Within a species, compatibility is the default, and S-haplotype-specific pollen rejection may be regarded as a mechanism superimposed on this compatibility to enhance outcrossing. Interspecific pollen rejection is less tractable because compatibility is not necessarily the default and pollen may fail to reach the ovary for many reasons. Thus, gain-of-function experiments that transfer candidate interspecific barrier genes into otherwise SC species are especially helpful for identifying active interspecific pollen rejection mechanisms.

Our results show that introducing functional S-RNase and HT genes from green-fruited SI species into *S. lycopersicum* causes rejection of pollen from all four red-fruited tomato species (Figures 3–5 and Table 1). The common ancestor of the entire tomato clade was probably SI (Spooner et al., 2005; Igic et al., 2008), and therefore expressed a full complement of functional SI factors. Our gain-of-function experiment restored pistil-side functions lost in the transition to SC in the red-fruited group (Kondo et al., 2002a). Previous studies showed that S-RNase alone is not sufficient for self-pollen rejection in *S. lycopersicum* (Kondo et al., 2002b) and this is now understood on the basis of the requirement for both S-RNase and HT proteins. Similar results were obtained in *Nicotiana*, in which expression of S-RNase alone in *N. plumbaginifolia*, a species that does not express HT-A- or HT-B-like proteins, does not cause rejection of *N. plumbaginifolia* pollen, but pollen rejection does occur in *N. plumbaginifolia* × SC *N. alata* hybrids (Murff et al., 1996). In these *Nicotiana* experiments, the identity of the non-S-RNase factors supplied from the SC *N. alata* background was not deter-

<table>
<thead>
<tr>
<th></th>
<th>Red-fruited</th>
<th>Green-fruited</th>
<th>SI pollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC pollen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. che. LA0522</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. gal. LA0438</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. pim. LA3798</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. chm. LA1316</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. neo. LA4023</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. pen. LA0716</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. hab. LA1777</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. pen. LA2560</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Plants expressing single HT-A, HT-B or S6-RNase transgenes and HTA/S6 and HTB/S6 plants were pollinated as shown. *S. lycopersicum* cv. VF36 and SI accessions of *S. habrochaites* and *S. pennellii* were used as positive and negative controls. Pollination phenotypes: \(-\), incompatible; \(+\), compatible. Abbreviations: *S. che.*, *S. cheesemaniae*; *S. gal.*, *S. galapagense*; *S. pim.*, *S. pimpinellifolium*; *S. chm.*, *S. chmielewskii*; *S. neo.*, *S. neorickii*; *S. hab.*, *S. habrochaites*; *S. pen.*, *S. pennellii*.

Table 1 The recapitulated HT/S6 barrier distinguishes red-fruited and green-fruited tomato relatives

© 2014 The Authors

mined, although HT-B was shown to be required (Hancock et al., 2005).

The requirement for both S-RNase and HT proteins suggests mechanistic similarity between S-RNase-dependent SI and UI, at least in terms of pistil-side function. However, it should be stressed that the two mechanisms are not identical. Crucially, SI is highly specific, and a given S-RNase only causes rejection of one S-haplotype, while the HT/S6 UI barrier operates at the species level and is inherently less specific. Because of this difference in specificity, we were able to recapitulate a UI barrier using genes from two SI species and testing for rejection of pollen from four red-fruited species. This difference in specificity has also been observed in Nicotiana (Murfett et al., 1996; Beecher et al., 2001), and there may also be other differences between S-RNase-dependent SI and UI (Hancock et al., 2005).

It is noteworthy that Figures 3 and 4 show that HT-A and HT-B function redundantly in the reconstructed HT/S6 UI barrier. O’Brien et al. (2002) used RNAi to suppress expression of HT-A and HT-B in the SI potato relative S. chacoense, and concluded that only HT-B is required for SI. However, we recently discovered that the SI tomato species S. habrochaites expresses only HT-A (Covey et al., 2010). Although this apparent conflict remains unresolved, the transformation system used here may be used in future studies addressing the function of either HT-A or HT-B.

The recapitulated HT/S6 UI barrier mirrors the natural barrier that separates the red-fruited tomato species from most of the green-fruited tomato species (Figure 5 and Table 1). Pollen from red-fruited species appear to entirely lack resistance to S-RNase-dependent UI, i.e. pollen from all red-fruited species is rejected by pistils of any SI green-fruited species, regardless of S-haplotype, and is also rejected by HT/S6 plants. A similar rejection mechanism for all red-fruited species is indicated because, in each case, rejection requires both HT proteins and S-RNase (Table 1). The growth of compatible SI S. pennelli accession LA2560 and SI S. habrochaites accession LA1777 pollen tubes to the ovary in HT/S6 plants is also as expected, as SI pollen rejection is S-haplotype-specific (i.e. pollen is resistant to rejection by non-self S-RNases). The growth of SC S. pennelli accession LA0716 pollen tubes is probably due to intact pollen resistance to S-RNase-based pollen rejection, as this accession retains the compatibility with SI S. pennelli accessions.

Table 1 illustrates the complexities of interspecific reproductive barriers that arise from redundancy and species-level specificity. Clearly, expressing the HT/S6 barrier in S. lycopersicum is sufficient to cause rejection of pollen from red-fruited species (Table 1, HT/S6, solid box), and this is clear evidence that SI and UI share common factors. Nevertheless, it is equally clear that pollen from red-fruited species is rejected by pistils of all SI green-fruited species, regardless of S-haplotype.
species is also rejected by SC S. pennellii accession LA0716, an accession that does not express S-RNase (Covey et al., 2010; Chalivendra et al., 2013). Thus, the S-RNase-dependent and S-RNase-independent rejection mechanisms active in SI accessions (e.g. SI S. pennellii accession LA2560) are redundant for pollen from red-fruited species. In contrast, pollen from S. chmielewskii and S. neorickii is resistant to the recapitulated HT/S6 barrier. However, SI pistils reject pollen from these species (Table 1, dashed box), probably due to one or more S-RNase-independent mechanisms. At present, it is not known whether the same S-RNase-independent rejection mechanism acts on pollen from red-fruited species as well as S. chmielewskii and S. neorickii. In any case, both S-RNase-dependent and S-RNase-independent rejection mechanisms entail pistil-side pollen rejection and pollen-side resistance. Moreover, pollen-side resistance may be direct or indirect. For example, in S-RNase-based SI in Solanaceae, both the collaborative S-RNase degradation model (Kubo et al., 2010) and the compartmentalization model (Goldraij et al., 2006) postulate the involvement of factors that confer pollen resistance. In the former model, the S-RNase/SLF protein interaction leads directly to resistance by S-RNase degradation, while resistance is indirect and arises from S-RNase sequestration in the latter model.

Changes in intraspecific and interspecific compatibility evolve in stages, with loss of pistil function as a necessary first step

The SC red-fruited tomato species possess mutations in multiple genes encoded in both pistil and pollen that affect S-RNase-based pollen rejection. It is not clear from these data alone how these species, which are interfertile, became reproductively isolated from the rest of the clade. Li and Chetelat (2010) recently reported that most accessions of the red-fruited tomato species display mutations in the ui6.1 gene encoding CUL1, and proposed that CUL1 forms part of a pollen resistance mechanism for S-RNase-based UI between red-fruited SC species and green-fruited SI species. Mutations in the ui6.1 gene, leading to loss of pollen resistance, may have resulted in UI between the ancestor of the red-fruited clade and the bulk of the green-fruited tomato clade. Li and Chetelat (2010) hypothesized that a ui6.1 mutation gene may become fixed only in a background where the corresponding pistil factors are not functional, as lack of pollen resistance would otherwise cause sterility. Here, we show that restoring functional pistil-side SI factors (i.e. HT and S-RNase genes) in red-fruited SC S. lycopersicum results in self-sterility (Figures 3 and 4). Thus, if a loss-of-function mutation occurred on the pollen side while pistil-side function was intact, the mutation would not persist because it would not be transmissible. We infer that loss-of-function shifts from SI to SC in Solanaceae are mechanistically constrained to occur in sequence, with loss of pistil-side function occurring first. This inference is supported by the absence of known SC tomato species or populations that lack pollen SI function but retain pistil function. In contrast, SC mutations affecting only the pistil side are known; for example, S. pennellii accession LA0716 and S. arcanum accession LA2157 display S-RNase mutations but produce pollen that functions on pistils of conspecific SI accessions. Loss of individual SLF genes may be an exception to this rule if they result in pollen rejection on some but not all pistil S-RNase haplotypes (Kubo et al., 2010).

In summary, our results show that it is possible to reconstruct UI barriers by bringing together SI genes from multiple species, and provide insight into the necessary stages that plants must pass through as their compatibility evolves. Clearly, pollination barriers acting at very different levels share common factors. Defining pollination barriers in this way also highlights differences between barriers. Although SI and UI are clearly connected in some cases, as we have shown here, this will probably not be true for all interspecific reproductive barriers. It is intriguing that HT genes are associated with many of these UI systems, raising the possibility that they are implicated in both S-RNase-dependent and S-RNase-independent UI pollen rejection mechanisms (Covey et al., 2010; Chalivendra et al., 2013). Why SC species accumulate defects in intraspecific and interspecific reproductive barriers remains unexplained, but, in principle, loss of SI may allow accumulation of loss-of-function mutations in non-essential factors associated with these mechanisms. Reproductive assurance and transmission advantage are thought to drive the initial shift from SI to SC (Goodwillie et al., 2005; Goldberg and Igc, 2012). Coupling of this shift to further losses of crossing barriers, as has occurred in red-fruited tomato species and several Nicotiana species, suggests multiple connections between intraspecific and interspecific pollen rejection mechanisms.

EXPERIMENTAL PROCEDURES

PLANT MATERIALS

S. pennellii accessions LA0716 and LA2560, S. chmielewskii accession LA1316, S. neorickii accession LA4023, S. pimpinellifolium accession LA3798 and S. lycopersicum cultivar VF36 (accession LA0490) were obtained from the C.M. Rick Tomato Genetics Resource Center (http://tgrc.ucdavis.edu). The S. lycopersicum (cv. Alisa Craig) line ACS6-39 expressing S$_\text{p}$-RNase has been described previously (Kondo et al., 2002b), and was obtained from Yasuo Kowyama (Graduate School of Bioresources, Mie University, Tsu, Japan).

HT GENE EXPRESSION CONSTRUCTS AND PLANT TRANSFORMATION

HT-A and HT-B genes were amplified from genomic DNA of S. pennellii SI accession LA2560 (Covey et al., 2010), and
expressed under the control of the tomato chitinase Cin2;1 gene promoter as described previously (Murfett et al., 1996). The construct was transferred to pCAMBIA 3300 (www.cambia.org), and transformed into S. lycopersicum cv. M82 at the Ralph M. Parsons Plant Transformation Facility (University of California, Davis, CA).

ANALYSES OF TRANSGENIC PLANTS EXPRESSING HT PROTEIN AND/OR S6-RNASE

Transformants (T0) showing the highest expression of HT-A or HT-B proteins in mature pistils were selected from among 10 independent events (HT-A) or 11 independent events (HT-B). For protein blots, HT-A and HT-B proteins in pistil extracts (1.5 mg fresh weight/lane, samples included the stigma and style but not the ovary) were detected using specific antisera as described previously (Covey et al., 2010). Plants expressing HT proteins and S6-RNase were generated by crossing selected HT-expressing T0 plants with ACSV-39 plants expressing S6-RNase. The presence of HT and S6-RNase transgenes was verified by PCR using forward primer 5′-TTGAAATTTTATCACCTTTCG-3′ from the Cin2;1 promoter sequence and a reverse primer specific for HT-A or HT-B 5′-TAGGAAAACAATGATCCTCCCCA-3′ and 5′-ACGGCTCGATCCAAA ATCC-3′, respectively. The primers for S6-RNase were 5′-AAA TGGCGCTAGACAAAAGGCT-3′ and 5′-CATTCCAGGTTGTTTTTC GT-3′. Primers 5′-ACCTGAGGAATTGGCTGTG-3′ and 5′-ATGGTT GCTTGCCTGAT-3′ for tubulin were used as a control. HT-A or HT-B proteins were detected as described previously (Covey et al., 2010). S6-RNase was detected using a specific guinea pig anti-S6-RNase antibody raised against the peptide Acetyl-CDPPEVDDYQIEKDHILNA-CONH2. Compatibility tests were based on 3–10 crosses. Flowers were emasculated 1 day before opening, and pollinated the following day (Chalivendra et al., 2013). Pollinated pistils were collected after 24 h, stained with aniline blue fluorochrome as described previously (Covey et al., 2010), and photographed using an Olympus IX-170 microscope (www. olympusamerica.com). Pollen tube lengths in incompatible crosses were measured from the top of the stigma to the point where most of the pollen tubes stopped.

ACKNOWLEDGEMENTS

We thank Yasuo Kowyma (Graduate School of Bioresources, Mie University, Tsu, Japan) for plants expressing S6-RNase, the C.M. Rick Tomato Genetics Resource Center for supplying seed stocks, Kyung Yeon Nam for help with pollinations, Leonie Moyle (Department of Biology, University of Indiana, Bloomington, IN, USA), Carlos Romero Salvador (Istituto Veneciano de Investigaciones Agrarias, Valencia, Spain) and April Randle for helpful comments, and Melody Kroll for proofreading. The project was supported by US National Science Foundation grant MCB 1127059.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure S1. Expression of S6-RNase and HT proteins in S. lycopersicum.

Figure S2. HT protein levels in HT-A-3, HTB-3 and HT/S6 T2 pistil extracts.

Figure S3. Pollen tube growth in a transgenic S. lycopersicum HTB/S6-4 T1 plant.

Figure S4. Growth of the S. cheesmaniae accession LA0522 pollen tube in transgenic S. lycopersicum plants.

Figure S5. Growth of the S. galapagensis accession LA0438 pollen tube in transgenic S. lycopersicum plants.

Figure S6. Growth of the S. pimpinellifolium accession LA3798 pollen tube in transgenic S. lycopersicum plants.

Table S1. Pollen tubes at the base of the style 24 h after pollination in HT-A x S6 progeny.

Table S2. Pollen tubes at the base of the style 24 h after pollination in HT-B x S6 progeny.

Table S3. Pollen tubes from wild species at the base of the style 24 h after pollination in HT/S6 plants.

Table S4. Lengths of longest pollen tubes from red-fruited species in HTA/S6 and HTB/S6 pistils.

REFERENCES

