Topological and Multipolar Magnets and Spintronics

Satoru Nakatsuji

Dept. of Physics, University of Tokyo
Institute for Solid State Physics (ISSP), University of Tokyo
Institute of Quantum Matters (IQM), Johns Hopkins University
Plan

- Multipole Physics on Correlated Electron Systems
- Topological States in Magnetic Systems
- Physics of Antiferromagnetic Weyl Semimetals
- Physics of Multipolar Kondo Lattice Systems
Lecture 4

- Multipole Physics on Correlated Electron Systems
- Topological States in Magnetic Systems
- Physics of Magnetic Weyl Semimetals
- Physics of Multipolar Kondo Lattice Systems
A pair of Weyl points

To satisfy the Gauss’s theorem,

\[C = \begin{cases} 1 & (-k_0 < k_Z < k_0) \\ 0 & (k_Z < -k_0, k_0 < k_Z) \end{cases} \]

\(k_x - k_y \) plane at \(-k_0 < k_Z < k_0\) can be regarded as the quantum Hall system.

- Hall conductivity

\[\sigma_{xy} = -\frac{e^2}{(2\pi)^2\hbar} \int_{-k_0}^{k_0} 1 \, dk_z = -\frac{e^2}{(2\pi)^2\hbar} (2k_0) \]
Weyl semimetals with large fictitious field in the k-space

Inversion or Time-reversal symmetry breaking

Berry curvature $\Omega(k)$

```
Weyl magnets
```

Magnetic structure allows to control the distribution of Weyl points

- Large transverse response derived from $\Omega(k)$

Weyl semimetals with large fictitious field in the k-space

Inversion or Time-reversal symmetry breaking

Dirac

Weyl

Berry curvature $\Omega(k)$

Topological magnets

Ferromagnets (FMs)

Antiferromagnets (AFMs)

Weyl Magnets: Functional Magnets

Anomalous Hall Effect

Anomalous Nernst Effect

Non-volatile Memory

Thermoelectric Conversion

Large responses are obtained irrespective of size of M.

Enhancement of ANE using topological band structures

\[S_{\text{ANE}} = \rho \left(-S_{\text{SE}} \sigma_{yx} + \alpha_{yx} \right) \]

Hall conductivity
\[\sigma_{\text{int}}^{yx} = e \int_{k} \left(e^2 / h \right) \left(2\pi \right)^{-3} \sum_{n} \Omega_{n,z}(k) f(\epsilon_{n,k}) d\epsilon \]

Transverse TE conductivity
\[\alpha_{yx} = \frac{k_B}{e} \int_{k} \epsilon_{xyz} \sum_{n,k} \left(\Omega_{n,z}(k) \delta(\epsilon - \epsilon_{n,k}) \right) s(\epsilon, T) d\epsilon \]

Berry curvature
\[\Omega_{n,z}(k) = -2\text{Im} \sum_{m \neq n} v_{nm,x}(k) v_{mn,y}(k) / \left(\epsilon_m(k) - \epsilon_n(k) \right)^2 \]

Weyl AFMs

Weyl FMs
- UCo$_{0.8}$Ru$_{0.2}$Al: Asaba et al., Sci. Adv. 7, eabf1467 (2021).

Nodal-web/-plane FMs

~10 times larger S_{ANE} than that of conventional FMs
Enhancement of ANE using topological band structures

\[S_{\text{ANE}} = \rho \left(-S_{\text{SE}} \sigma_{yx} + \alpha_{yx} \right) \]

Hall conductivity

\[\sigma_{\text{int}}^{yx} = \epsilon_{\text{xyz}} \left(\frac{e^2}{\hbar} \right) \int (2\pi)^{-3} \sum_n \Omega_{n,z}(k) f(\epsilon_{n,k}) \, dk \]

Transverse TE conductivity

\[\alpha_{yx} = \frac{k_B}{e} \int_{\epsilon} \epsilon_{\text{xyz}} \sum_{n,k} \{ \Omega_{n,z}(k) \delta(\epsilon - \epsilon_{n,k}) \} \, s(\epsilon, T) \, d\epsilon \]

Berry curvature

\[\Omega_{n,z}(k) = -2\text{Im} \sum_{m \neq n} v_{nm,x}(k)v_{mn,y}(k) \left(\epsilon_m(k) - \epsilon_n(k) \right)^2 \]

Weyl AFMs

Weyl FMs

UCO0.8Ru0.2Al: Asaba et al., Sci. Adv. 7, eabf1467 (2021).

Nodal-web/-plane FMs

~10-100 times larger \(S_{\text{ANE}} \) than that of conventional FM

\[\alpha \approx \frac{1}{\hbar} \text{Im} \left[\int \epsilon_{\text{xyz}} \sum_{n,k} \{ \Omega_{n,z}(k) \delta(\epsilon - \epsilon_{n,k}) \} \right] \]

\[\sigma_{\text{int}}^{yx} = \epsilon_{\text{xyz}} \left(\frac{e^2}{\hbar} \right) \int (2\pi)^{-3} \sum_n \Omega_{n,z}(k) f(\epsilon_{n,k}) \, dk \]

\[\alpha_{yx} = \frac{k_B}{e} \int_{\epsilon} \epsilon_{\text{xyz}} \sum_{n,k} \{ \Omega_{n,z}(k) \delta(\epsilon - \epsilon_{n,k}) \} \, s(\epsilon, T) \, d\epsilon \]

\[\Omega_{n,z}(k) = -2\text{Im} \sum_{m \neq n} v_{nm,x}(k)v_{mn,y}(k) \left(\epsilon_m(k) - \epsilon_n(k) \right)^2 \]

Topological (Weyl) AFM Mn₃Sn

Mn₃Sn : Chiral antiferromagnetic order \((T_N \sim 430 \text{ K})\)

Order parameter :
Cluster magnetic octupole
Suzuki et al., PRB 95, 094406 (2017).

[Berry curvature]
\(\Omega(k)\)

[Real space]
Magnetic structure

[01\bar{1}0]
[\bar{2}110]
[0001]

Weyl points

Antiferromagnets exhibiting large transverse responses

Anomalous Hall effect

[Real space]
Magnetic structure

Large transverse responses of Weyl AFM Mn$_3$Sn

Anomalous Nernst effect

Anomalous Hall effect

Magneto-optical Kerr effect

M independent ANE of Weyl AFM Mn$_3$Sn

\[S_{(A)NE} = Q_0 B + Q_S \mu_0 M + S_{ANE} \]

\[S_{ANE} = \rho \left(\alpha_{yx} - S_{SE} \sigma_{yx} \right) \sim -0.5 \mu V/K \]

\[\rho S_{SE} \sigma_{zx} \sim -0.1 \mu V/K \]

Large spontaneous ANE at room temperature

\[S_{ANE} = Q_0 B + Q_S \mu_0 M + S_{ANE} \]

\[S_{ANE} \sim 0.005 \mu_B \]

\[S_{ANE} \sim 0.002 \mu V/K \]

\[M \text{ independent ANE} \propto \Omega(k) \sim 100 T \]

\[\Omega(k) \text{ around } E_F \]

\[\Omega(k) \text{ below } E_F \]

\[\equiv \text{ FM metals} \]

ANE induced by large $\Omega(k)$ from topological band structures

Ikhlas, Tomita et al., Nat. Phys. 13, 1085 (2017).
Topological (Weyl) ferromagnet \(\text{Co}_2\text{MnGa} \)

\[\delta_{\mathrm{yr}} = \rho_{\mathrm{xx}y} (\alpha_{\mathrm{yx}} - S_{\mathrm{yy}y} \sigma_{\mathrm{yx}}) \]

around \(E_F \) below \(E_F \)

Largest ANE @ \(T \geq RT \) (6 \(\mu \)V/K @ RT, 8 \(\mu \)V/K @ 400 K)

\[\delta_{\mathrm{yr}} = \rho_{\mathrm{xx}y} (\alpha_{\mathrm{yx}} - S_{\mathrm{yy}y} \sigma_{\mathrm{yx}}) \]

around \(E_F \) below \(E_F \)
Topological band structure of Co$_2$MnGa

Weyl points

Lifshitz transition

Figs. Courtesy H. Nakamura

Type-I Weyl

Critical point

Type-II Weyl

Diminished DOS

Large DOS (Flat band) Lifshitz transition

Finite DOS

< 20K
\[\alpha_{yx} \approx -\frac{\pi^2 k_B^2 T}{3} |e| \frac{\partial \sigma_{yx}}{\partial E_F} \]
\[\Rightarrow \frac{\alpha_{yx}}{T} = \text{Constant (Mott relation)} \]

\[\alpha_{yx} \approx \frac{\alpha_{yx, \text{max}}}{T_0} \log \left(\frac{|\mu - E_0|}{k_B T_0} \right) \]
\[\Rightarrow \frac{\alpha_{yx}}{T} = -\log T \]

suggests quantum Lifshitz transition

Large $\Omega(k)$ at Weyl points & DOS due to quantum Lifshitz transition

\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\alpha_{yx} \approx -\frac{\pi^2 k_B^2 T}{3} |e| \frac{\partial \sigma_{yx}}{\partial E_F}
\end{equation}
\end{document}
Nodal-web ferromagnet $D0_3$-Fe_3X ($X = Ga, Al$)

$D0_3$-Fe_3X ($X = Ga, Al$)

Calc. for \sim1300 samples using MI

<table>
<thead>
<tr>
<th>Formula</th>
<th>Space group</th>
<th>$\sigma_{\text{max}} (A K^{-1} m^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_3$Pt</td>
<td>$Pm3m$</td>
<td>6.2</td>
</tr>
<tr>
<td>Fe$_3$Ga</td>
<td>$Pm3m$</td>
<td>3.0</td>
</tr>
<tr>
<td>Fe$_3$Al</td>
<td>$Pm3m$</td>
<td>2.7</td>
</tr>
</tbody>
</table>

\bullet Giant ANE comparable to Co$_2$MnGa ($S_{\text{ANE}} \sim 5.5 \mu V/K$ @ RT)

\bullet Binary systems consisting of safe & inexpensive elements

[Bulk & Film ($D0_3$)] Sakai†, …, TH† et al., Nature 581, 53 (2020).

S. Minami et al., PRB 102, 205128 (2020).

Zhou, Sakuraba, APEX 13, 043001 (2020).
Heat flux sensor

Heat flux $q = \kappa(T_1 - T_2)/L$

Sensitivity (1 x 1 cm²)

- 10 μV/(W/m²) (100 mV/W)

Visualizing the heat flow

- Heat dissipation/reception around an engine
- Abnormal heat generation in electronics
- Thermal conductivity (insulation)
- Health Care (deep body temperature)
Flexible heat flow sensor using thin-film fabrication

Price:

- SE $500 → ANE $1-10

Sensitivity

- **ANE-type heat flux sensor**
 - Heat Flux
 - 2D

Flexible, Simple, Large area

Sensitivity

- 0.001 - 0.01 mV/W · m⁻²

<table>
<thead>
<tr>
<th>Material</th>
<th>Sensitivity (μV/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn₃Sn</td>
<td>0.35</td>
</tr>
<tr>
<td>Fe₃Ga</td>
<td>~6</td>
</tr>
</tbody>
</table>

Seebeck effect

- 3D

Sensitivity

- 0.01 mV/W · m⁻²

Denso HP

E.g., Zhou & Sakuraba, APEX 13, 043001 (2020); TH et al., Adv. Funct. Mater. 31, 2008971 (2021)...

Flexible heat flow sensor using thin-film fabrication

Price:

- SE $500 → ANE $1-10
Flexible, Simple, Large area

Sensitivity

0.001 - 0.01 mV/W \cdot m^{-2}

- \text{Mn}_3\text{Sn} : 0.35 \mu V/K
- \text{Fe}_3\text{Ga} : \sim 6 \mu V/K

Problem: Shape anisotropy

- No ANE
- Finite ANE

Magnetic hardness parameter κ

$$\kappa = \left(\frac{K}{\mu_0 M^2}\right)^{1/2}$$

Large $\kappa \Rightarrow$ ideal arrangement

- e.g., Zhou & Sakuraba, APEX 13, 043001 (2020); TH et al., Adv. Funct. Mater. 31, 2008971 (2021)…

Flexible heat flow sensor using thin-film fabrication

Price: SE $500 \rightarrow$ ANE $1-10$
Collaboration work with Nitto Denko Corp.

Roll to Roll fabrication

PET film

Fe₃Ga target

Material for electrode

100°C

Sheet Sample

Lithography-1

Lithography-2

Su-8 coating

Sensor image

Direct sensing of perpendicular heat flux

\[V_y^{SE} + V_{ANE} \]

[Diagram showing the direct sensing of perpendicular heat flux]

\[S_{SE}^{Magnet} = S_{SE}^{Electrode} \]

[Schematic representation of the electrode and magnet setup]

No offset

large offset

H. Tanaka Y. Nakanishi H. Machinaga

Mass producible flexible sensor for perpendicular heat flux sensing
Plan

- Multipole Physics on Correlated Electron Systems
- Topological States in Magnetic Systems
- Physics of Antiferromagnetic Weyl Semimetals
- Physics of Multipolar Kondo Lattice Systems
Multipolar phenomena in Ce$^{3+}$-based systems

La-doped CeB$_6$: B-T phase diagram featuring dipolar, quadrupolar, and octupolar orders

Ce$_3$Pd$_{20}$Si$_6$: Two electron localization transitions driven by dipolar and quadrupolar d.o.f.

The multipolar orders are “hidden” under the dipolar (spin) order.

Let’s design a new material platform to explore pure multipolar phenomena.

D. Jang et al., npj Quantum Mater (2017)
V. Martellia et al., PNAS (2019)
Cubic Pr$^{3+}$ systems: Ideal platform for multipolar physics

4f Kramers doublet (e.g., Ce$^{3+}$, Yb$^{3+}$)
- Odd number of f electrons
- Half-integer J
- Kramer’s theory: double degeneracy protected by time-reversal symmetry

Ce$^{3+}$ ($4f^1$) $J = 7/2$
- SOC + Cubic CEF
- $\Gamma_8 \rightarrow \Gamma_7$
- Always carry magnetic dipoles
- Degeneracy is robust against structural disorder

4f non-Kramers doublet (e.g., Pr$^{3+}$)
- Even number of f electrons
- Integer J
- Double degeneracy is not protected by time-reversal symmetry but by the local symmetry

Pr$^{3+}$ ($4f^2$) $J = 5$
- SOC + Cubic CEF
- $\Gamma_1 \rightarrow \Gamma_5 \rightarrow \Gamma_4 \rightarrow \Gamma_3$
- No magnetic dipoles but high-rank multipoles
- Degeneracy can be lifted by structural disorder
Cubic Pr$^{3+}$ systems: Ideal platform for multipolar physics

Pr (TM)$_2$Al$_{20}$

Frank-Kasper cages of 16 Al surrounding the Pr ion → strong c-f hybridization

CEF scheme of Pr$^{3+}$ in local cubic environment

Pr$^{3+}$ $4f^2$

J=4

SOC

CEF with a point group symmetry T_d

$|\Gamma_3^+\rangle = \frac{1}{2} \sqrt{7} (|+4\rangle + |-4\rangle) - \frac{1}{2} \sqrt{5} |0\rangle$

$|\Gamma_3^-\rangle = \frac{1}{2} \sqrt{5} (-|+2\rangle + |-2\rangle) + \frac{1}{2} \sqrt{3} |0\rangle$

Well-isolated non-Kramers doublet ground state

PrV_2Al_{20} (T_d) Γ_1 156 K

Pr$\text{T}i_2\text{Al}_{20}$ (T_d) Γ_5 107 K

$\Gamma_4 = 65$ K

$\Gamma_5 \approx 40$ K

Δ
Cubic Pr$^{3+}$ systems: Ideal platform for multipolar physics

Frank-Kasper cages of 16 Al surrounding the Pr ion → strong c-f hybridization

Pr$^3+$ in local cubic environment

CEF scheme with point group symmetry T_d

PrV_2Al_{20}

PrTi_2Al_{20}

Non-magnetic!
How do multipoles modify quantum phenomena?

Magnetic Kondo effect

Single-channel Kondo model ($k = 1$) and exact screening

f electrons become itinerant and enter the Fermi surface in the heavy-fermion Fermi liquid (FL) ground state

$$\rho \sim AT^2$$

$$C/T \sim \frac{m^*}{m_0} \gamma_0$$

Quadrupolar Kondo effect

Two-channel Kondo model ($k = 2$) and over-screening

Residual entropy $S_0 = \frac{1}{2} R \ln 2$ leads to a non-Fermi liquid (NFL) ground state

$$\rho \sim T^{1/2}, \ C/T \sim - \ln T,$$

$$\chi \sim T^{1/2} \ \text{or} \sim - \ln T$$

The multipolar Kondo effect represents an alternative route to novel NFLs, distinct from quantum criticality. The NFL is intrinsic to the multipolar Kondo interaction and thus does not require fine-tuning of parameters.

\[\rho \sim AT^2, \quad C/T \sim \frac{m^*}{m_0} \gamma_0 \]

\[\chi \sim T^{1/2} \text{ or } -\ln T \]
Multipolar RKKY vs. Multipolar Kondo effect?

Modulated AFQ order in PrPb$_3$

Single-site multipolar Kondo effect in Y$_{1-x}$Pr$_x$Ir$_2$Zn$_{20}$

T. Ominaru et al., PRL94, 197201 (2005)

Y. Yamane et al., PRL121, 077206 (2018)
Multipolar RKKY vs. Multipolar Kondo effect?

Modulated AFQ order in PrPb₃

Can we find a way to **tune** the competition between the multipolar Kondo effect and RKKY-type multipolar interaction in a lattice system?

Single-site multipolar Kondo effect in Y₁₋ₓPrₓIr₂Zn₂₀

PrIr₂Zn₂₀ (x = 1)

AFQ order

Dilute

Y₁₋ₓPrₓIr₂Zn₂₀

Non-Fermi liquid

T. Ominaru *et al.*, PRL 94, 197201 (2005)

Y. Yamane *et al.*, PRL 121, 077206 (2018)
Unifying themes of strongly correlated matters

High-T_c cuprate

Universal properties among various material classes?

Fe-based SC

Organic SC

MATBG

Quantum critical non-Fermi-liquid (NFL)

Ordered state (intertwined d.o.f)

Disordered state

QCP
Unifying themes of strongly correlated matters

High-\(T_c\) cuprate

Universal properties among various material classes?

Fe-based SC

Organic SC

MATBG

Quantum critical non-Fermi-liquid (NFL)

Magnetic quantum criticality has been extensively studied, but quantum criticality driven purely by orbital fluctuations is unexplored.
How do multipoles modify quantum phenomena?

Tuning a multipolar Kondo system to a QCP

Will the resultant phase diagram different from the Doniach phase diagram?

Novel quantum critical phenomena and superconductivity?
Pr(Ti, V)\textsubscript{2}Al\textsubscript{20}: Multipolar order, NFL, and quantum criticality

Long-range multipolar order:
- PrTi\textsubscript{2}Al\textsubscript{20}: Ferroquadrupolar (FQ) order at $T_Q \sim 2$K
- PrV\textsubscript{2}Al\textsubscript{20}: Two-stage transitions at $T_Q \sim 0.75$K (AFQ) and $T^* \sim 0.65$K (octupolar order?)

A. Sakai and S. Nakatsuji, JPSJ 80, 063701 (2011)
Pr(Ti, V)$_2$Al$_{20}$: Multipolar order, NFL, and quantum criticality

Long-range multipolar order:
- PrTi$_2$Al$_{20}$: Ferroquadrupolar (FQ) order at $T_Q \sim 2K$
- PrV$_2$Al$_{20}$: Two-stage transitions at $T_Q \sim 0.75K$ (AFQ) and $T^* \sim 0.65K$ (octupolar order?)

A. Sakai and S. Nakatsuji, JPSJ 80, 063701 (2011)

Heavy fermion superconductivity:
large γ and $dB_{c2}/dT|_{T=T_c}$ $m^*/m_0 \sim 20$, (Ti), 150 (V).

M. Tsujimoto et al., PRL 113, 267001 (2014)
Pr(Ti, V)$_2$Al$_{20}$: Multipolar order, NFL, and quantum criticality

Kondo resonant peak in PrTi$_2$Al$_{20}$ → substantial c-f hybridization

M. Matsunami et al., PRB 84, 193101 (2011)

Tuning chemical pressure: Volume PrTi$_2$Al$_{20}$ > PrV$_2$Al$_{20}$

NFL behavior $\rho \sim \sqrt{T}$ in PrV$_2$Al$_{20}$ due to stronger hybridization

M. Tsujimoto et al., PRL 113, 267001 (2014)

A. Sakai and S. Nakatsuji, JPSJ 80, 063701 (2011)
The $-\ln T$ behavior driven by the magnetic Kondo effect increases in magnitude as c-f hybridization enhances under pressure.

Resistivity becomes incoherent near $P_c \sim 11$ Gpa.
Pr(Ti, V)$_2$Al$_{20}$: Multipolar order, NFL, and quantum criticality

- Pronounced enhancement of T_c and effective mass m^* on approaching $P_c \sim 11$ GPa;
- Two SC domes extending to 16 GPa
- Robust NFL behavior covering a wide parameter range; FL phase does not recover under high pressures
Topological and Multipolar Magnets and Spintronics

Satoru Nakatsuji

Dept. of Physics, University of Tokyo
Institute for Solid State Physics (ISSP), University of Tokyo
Institute of Quantum Matters (IQM), Johns Hopkins University